5 resultados para Base Composition

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correspondence between the transversion/transition ratio and the neighboring base composition in chloroplast DNA is examined. For 18 noncoding regions of the chloroplast genome, alignments between rice (Oryza sativa) and maize (Zea mays) were generated by two different methods. Difficulties of aligning noncoding DNA are discussed, and the alignments are analyzed in a manner that reduces alignment artifacts. Sequence divergence is < 10%, so multiple substitutions at a site are assumed to be rare. Observed substitutions were analyzed with respect to the A+T content of the two immediately flanking bases. It is shown that as this content increases, the proportion of transversions also increases. When both the 5'- and 3'-flanking nucleotides are G or C (A+T content of 0), only 25% of the observed substitutions are transversions. However, when both the 5'- and 3'-flanking nucleotides are A or T (A+T content of 2), 57% of the observed substitutions are transversions. Therefore, the influence of flanking base composition on substitutions, previously reported for a single noncoding region, is a general feature of the chloroplast genome.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new method for computing evolutionary distances between DNA sequences is proposed. Contrasting with classical methods, the underlying model does not assume that sequence base compositions (A, C, G, and T contents) are at equilibrium, thus allowing unequal base compositions among compared sequences. This makes the method more efficient than the usual ones in recovering phylogenetic trees from sequence data when base composition is heterogeneous within the data set, as we show by using both simulated and empirical data. When applied to small-subunit ribosomal RNA sequences from several prokaryotic or eukaryotic organisms, this method provides evidence for an early divergence of the microsporidian Vairimorpha necatrix in the eukaryotic lineage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of several Salmonella typhimurium in vivo-induced genes located in regions of atypical base composition has uncovered acquired genetic elements that cumulatively engender pathogenicity. Many of these regions are associated with mobile elements, encode predicted adhesin and invasin-like functions, and are required for full virulence. Some of these regions distinguish broad host range from host-adapted Salmonella serovars and may contribute to inherent differences in host specificity, tissue tropism, and disease manifestation. Maintenance of this archipelago of acquired sequence by selection in specific hosts reveals a fossil record of the evolution of pathogenic species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many bacteria live only within animal cells and infect hosts through cytoplasmic inheritance. These endosymbiotic lineages show distinctive population structure, with small population size and effectively no recombination. As a result, endosymbionts are expected to accumulate mildly deleterious mutations. If these constitute a substantial proportion of new mutations, endosymbionts will show (i) faster sequence evolution and (ii) a possible shift in base composition reflecting mutational bias. Analyses of 16S rDNA of five independently derived endosymbiont clades show, in every case, faster evolution in endosymbionts than in free-living relatives. For aphid endosymbionts (genus Buchnera), coding genes exhibit accelerated evolution and unusually low ratios of synonymous to nonsynonymous substitutions compared to ratios for the same genes for enterics. This concentration of the rate increase in nonsynonymous substitutions is expected under the hypothesis of increased fixation of deleterious mutations. Polypeptides for all Buchnera genes analyzed have accumulated amino acids with codon families rich in A+T, supporting the hypothesis that substitutions are deleterious in terms of polypeptide function. These observations are best explained as the result of Muller's ratchet within small asexual populations, combined with mutational bias. In light of this explanation, two observations reported earlier for Buchnera, the apparent loss of a repair gene and the overproduction of a chaperonin, may reflect compensatory evolution. An alternative hypothesis, involving selection on genomic base composition, is contradicted by the observation that the speedup is concentrated at nonsynonymous sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.